Photophysical, Electrochemical and Thermal Studies of 5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline Derivatives: Green and Yellow Fluorescent Materials

Azam M. Shaikh, Bharat K. Sharma and Rajesh M. Kamble*

Department Of Chemistry, University Of Mumbai, Santacruz (East), Mumbai—400 098 (India)

*Corresponding Author: Email: kamblerm@chem.mu.ac.in

Received: February 20, 2015 Revised: April 7, 2015 Accepted: April 11, 2015 Published: April 13, 2015

Abstract: In this work, 5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH₃) and its derivatives were prepared in good yield by condensing 5-Substituted-1-methyl-1H-Indole-2,3-dione and 2,3-diaminonaphthalene in glacial acetic acid. The structure of BIQCH₃ and its derivatives were confirmed using FT−IR, ¹H NMR, ¹³C NMR, Mass spectra and elemental analysis. The photophysical and electrochemical studies of BIQCH₃ and its derivatives were studied by UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry respectively. The optical energy band gap of BIQCH₃ and its derivatives lies in the range of 2.53–2.58 eV. Thermal analysis of BIQCH₃ and its derivative were studied by Thermo Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA).

Keywords: Green–yellow Electroluminescent Material, Photophysical Properties, Electrochemical Properties, Thermal Properties.

1. INTRODUCTION

In last few decades there is a significant progress in the field of Organic electronics which includes Organic light emitting diodes (OLEDs) [1–3], Organic field effect transistors (OFETs) [4] and Dye sensitized solar cells (DSSCs) [5–7]. Molecules containing Donor-acceptor (D–A) core have been found to exhibit interesting charge-transporting characteristics in electroluminescent devices [8]. Indolo[2,3-b]quinoxaline and their derivatives are very important class of nitrogen containing heterocyclic compounds and have been widely used in dyes [9], photoinitiator [10] and Optical devices [11–14]. Indolo[2,3-b]quinoxalines not only possess many important applications in material sciences, but also in medicinal chemistry. Earlier research showed that indolo[2,3-b]quinoxaline derivatives exhibit a wide range of interesting biological activities, such as antiviral [15,16] anticancer [17,18] antimicrobial [19] and antibacterial activities [20].

Benz[g]indolo[2,3-b]quinoxalines is a built in donor–acceptor chromophores as it contain the electron rich indole unit fused with electron deficient quinoxaline moiety, however they are reported in literature [21,22] and are used in medicinal chemistry as an antiviral and anticancer agents [23,24]. Considering the importance of indolo[2,3-b]quinoxalines in material sciences it was decided to investigate the optoelectronic and thermal properties of Benz[g]indolo[2,3-b]quinoxalines. To the best of our knowledge the optoelectronic and thermal properties of Benz[g]indolo[2,3-b]quinoxalines have not been investigated.
been yet explored. The optoelectronic properties of Benz[g]indolo[2,3-b]quinoxalines can be readily tuned by introducing electron donating or electron withdrawing group at second position of indole unit of Benz[g]indolo[2,3-b]quinoxalines.

In this paper we report the photophysical, electrochemical and thermal properties of 5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH₃) and its derivatives (Chart 1) by substituting second position of BIQCH₃ (1) with electron donating and electron withdrawing groups such as –CH₃ and –Br, –NO₂ respectively. The studies also explores the effects of electron donating and electron withdrawing group at second position of BIQCH₃ on electrochemical properties such as HOMO and LUMO energy levels and photophysical properties.

![Molecular structures of BIQCH₃ and its derivatives 1-4.](image)

Chart 1: Molecular structures of BIQCH₃ and its derivatives 1–4.

2. EXPERIMENTAL SECTION

2.1 Materials and Equipments

All the starting materials and reagents were purchased from commercial source (S D fine and Alfa Aesar) and were used without any further treatment and purifications unless otherwise noted. The organic solvents were of HPLC and spectroscopic grade and were dried and freshly distilled using the standard procedures and handled in moisture free atmosphere.

Investigation and confirmation of chemical structures of all the prepared molecules were done using FT-IR, ¹H NMR, ¹³C NMR, MASS spectra and Elemental analysis. ¹H NMR spectra and ¹³C NMR spectra were recorded using CDCl₃ on a Bruker 300 Ultrashield spectrometer with Tetramethylsilane
(TMS) as internal reference at a working frequency of 300 MHz and 75 MHz respectively. Fourier transform infrared (FT-IR) spectra were recorded on a Perkin Elmer Frontier 91579. Elemental analysis was recorded on Euro EA elemental analyzer and Mass spectra were recorded on Thermo scientific GC-MS. HRMS spectra of BIQCH$_3$NO$_2$ (4) was recorded on maxis impact 282001.00081 instrument.

UV–Visible spectra were recorded for 10$^{-5}$ M toluene solutions in a 1 cm path length quartz cuvette as well as thermally deposited thin solid films, on SHIMADZU U.V–2401PC at room temperature. The excitation and emission spectra were carried out on a Perkin Elmer LS 55 Fluorescence spectrophotometer. Optical band gap energy was taken from the intersection of normalized excitation and emission spectra. The fluorescence quantum yields (ϕ_F) were calculated relative to tris(8-hydroxyquinolinato)aluminium(III) (Alq$_3$) in benzene (ϕ_F =0.16) [25] as a standard for green emitting materials.

Cyclic voltammetry studies was carried out on a computer controlled AUTOLAB PGSTATE 30 electrochemical analyzer equipped with USB electro chemical interface using GPES software version 4.9.005. Typically, a three electrode cell equipped with a glassy carbon working electrode, Ag/AgCl (non-aqueous) reference electrode and platinum (Pt) wire as counter electrode was employed. The measurements have been carried at room temperature in anhydrous dichloromethane (10$^{-3}$ M) with Bu$_4$NPF$_6$ (0.1 M) as supporting electrolyte with a scan rate of 100 mVs$^{-1}$. The potential of Ag/AgCl reference electrode was calibrated by using ferrocene/ferrocenium redox couple which has the known oxidation potential of + 4.8 eV.

The Ionization potential (HOMO) is calculated from peak potentials (E_{oxi}) of the oxidation event according to the equation (1). Electron affinity (LUMO) energy values are calculated from peak potentials (E_{red}) of the reduction event according to the equation (2).

$$E_{HOMO} = - [E_{peak}^{oxi} - E_{oxi} (Fc/Fe^+) + 4.8] \text{ eV}$$

$$E_{LUMO} = - [E_{peak}^{red} - E_{red} (Fc/Fe^+) + 4.8] \text{ eV}$$

Melting points of the products were determined by open capillary method and compared with Differential Thermal analysis (DTA). The thermo gravimetric analysis (TGA) was performed using Perkin Elmer Pyris Diamond TG/DTA under nitrogen atmosphere. Column chromatography was carried out using SD–Fine silica gel (60–120 mesh), eluting with n–hexane and chloroform. The progress of reaction and the purity of the compound were checked by thin layer chromatography (TLC) on silica gel coated glass plates, in which the spots were visualized with UV light and in iodine chamber.

2.2 Synthesis and Characterization

5-Substituted-1-methyl-1H-Indole-2,3-dione is prepared according to the reported procedure [26–28]. Compound 1–4 was prepared by condensation of 5-Substituted-1-methyl-1H-Indole-2,3-dione and 2,3-diaminonaphthalene in acetic acid. Preparation of BIQCH$_3$ (1), BIQCH$_3$Br (3) and BIQCH$_3$NO$_2$ (4) are reported in literature [21,22]. However BIQCH$_3$CH$_3$ (2) is not reported and all of these compounds are confirmed by FT-IR, 1H NMR, 13C NMR, MASS spectra and elemental analysis. Due to the poor solubility of BIQCH$_3$NO$_2$ (4) in various solvent we could not get the 1H NMR, 13C NMR spectra but it is confirmed by Mass spectra and High Resolution Mass Spectra (HRMS). The detailed synthetic route adopted for the synthesis of BIQCH$_3$ and its derivatives 1–4 is depicted in Scheme 1 and molecular structures of the prepared derivatives are illustrated in Chart 1.
Reaction condition: (i) anhydrous K$_2$CO$_3$/CH$_3$I, DMF, Reflux, 15 hrs.
(ii) CH$_3$COOH, Reflux, 3hrs.

Scheme 1: Preparation of BIQCH$_3$ and its derivatives 1–4.

2.2.1 General procedure for the preparation of BIQCH$_3$ and its derivatives 1–4:
A mixture of 5-Substituted-1-methyl-1H-Indole-2,3-dione (1 mmol) and 2,3-diamino naphthalene (108 mg, 1 mmol) was dissolved in glacial acetic acid (10 ml). The reaction mixture was continuously stirred at 100°C for 3 hrs. After completion of reaction, reaction mixture is poured in cold distilled water and filtered, and washed with water. The solid thus obtained was then purified by column chromatography (eluent: n-hexane: chloroform ratio as 70:30) to obtain a yellow to orange solid.

2.2.1.1. Preparation of 5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH$_3$) (1)
Yield: 212 mg (75.0 %), M.P.: 238°C. MS: C$_{19}$H$_{13}$N$_3$, m/z: 284.17 [M+1]$^+$. Anal. Calcd for C$_{19}$H$_{13}$N$_3$: C (80.54), H (4.62), N (14.84). Found: C (80.56), H (4.62), N (14.82). IR (neat, ν_{max} cm$^{-1}$): 1112, 1274, 1496, 2922, 3049; 1H NMR (CDCl$_3$, 300 MHz): δ (ppm) 3.84 (s, 3H, $-$CH$_3$), 7.35 (q, 2H, ArH, J = 7.5 Hz, 9 Hz), 7.45 (q, 2H, ArH J = 6.6 Hz, 7.2 Hz), 7.63 (t, 1H, ArH, J = 8.1 Hz), 8.40 (d, 2H, ArH, J = 7.5 Hz), 8.08 (dd, 2H, ArH, J = 8.1 Hz), 8.80 (s, 1H, ArH); 13C NMR (CDCl$_3$, 75 MHz): δ (ppm) 27.35, 109.00, 119.00, 121.07, 122.97, 124.49, 125.01, 126.16, 127.58, 128.36, 131.31, 131.81, 133.34, 137.16, 137.71, 142.73, 146.14, 146.37.

2.2.1.2. Preparation of 2, 5-dimethyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH$_3$CH$_3$) (2)
Yield: 208 mg (70.0 %), M.P.: 215°C. MS: C$_{20}$H$_{15}$N$_3$, m/z: 298.36 [M+1]$^+$. Anal. Calcd for C$_{20}$H$_{15}$N$_3$: C (80.78), H (5.09), N (14.13). Found: C (80.77), H (5.08), N (14.15). IR (neat, ν_{max} cm$^{-1}$): 1113,1391, 1578, 1605, 2852, 2919, 3044; 1H NMR (CDCl$_3$, 300 MHz): δ (ppm) 2.49 (s, 3H, $-$CH$_3$), 3.84 (s, 3H, $-$CH$_3$), 7.37–7.52 (m, 4H, ArH), 8.04 (dd, 2H, ArH, J = 7.8 Hz, 8.1 Hz), 8.15 (s, 1H, ArH), 8.49 (s, 1H, ArH), 8.73 (s, 1H, ArH); 13C NMR (CDCl$_3$, 75 MHz): δ (ppm) 21.12, 27.31, 108.64, 119.37, 122.98, 124.34,
124.88, 126.04, 127.48, 127.65, 128.33, 130.58, 131.18, 132.76, 133.24, 137.06, 137.68, 142.70, 144.21, 146.45.

2.2.1.3. Preparation of 2-bromo-5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH$_3$Br) (3)

Yield: 260 mg (72.0 %), M.P.: 274 °C. MS: C$_{19}$H$_{12}$BrN$_3$, m/z: 362.53 [M$^+$]. Anal.Calc for C$_{19}$H$_{13}$BrN$_3$: C (63.00), H (3.16), N (11.60), Br (22.06). Found: C (63.03), H (3.11), N (11.61), Br (22.05). IR (neat, ν_{max} cm$^{-1}$): 1271, 1449, 1580, 1598, 2920, 3045; 1H NMR (CDCl$_3$, 300 MHz): δ (ppm) 3.90 (s, 3H, $-$CH$_3$), 7.27–7.59 (m, 2H, ArH), 7.78 (dd, 2H, ArH, $J = 2.1$ Hz, 6.6 Hz), 8.12 (dd, 2H, ArH, $J = 1.5$ Hz, 5.7 Hz), 8.56 (s, 1H, ArH), 8.62 (s, 1H, ArH), 8.83 (s, 1H, ArH); 13C NMR (CDCl$_3$, 75 MHz): δ (ppm) 27.62, 110.57, 124.70, 125.35, 125.81, 126.55, 127.76, 127.90, 128.30, 128.47, 128.56, 129.03, 129.23, 130.08, 131.48, 131.57, 132.50, 134.36, 144.78.

2.2.1.4. Preparation of 2-nitro-5-methyl-5H-Benz[g]indolo[2,3-b]quinoxaline (BIQCH$_3$NO$_2$) (4)

Yield: 132 mg (40.0 %), M.P.: >300 °C. MS: C$_{19}$H$_{13}$N$_4$O$_2$, m/z: 327.83 [M$^+$]. HRMS cal for C$_{19}$H$_{13}$N$_4$O$_2$: 329.1035, found 329.1033. Anal.Calc for C$_{19}$H$_{13}$N$_4$O$_2$: C (69.51), H (3.68), N (17.06) O (9.75). Found: C (69.55), H (3.69), N (17.02) O (9.74). IR (neat, ν_{max} cm$^{-1}$): 1271, 1449, 1580, 1598, 2920, 3045; 1H NMR (CDCl$_3$, 300 MHz): δ (ppm) 3.90 (s, 3H, $-$CH$_3$), 7.27–7.59 (m, 2H, ArH), 7.78 (dd, 2H, ArH, $J = 2.1$ Hz, 6.6 Hz), 8.12 (dd, 2H, ArH, $J = 1.5$ Hz, 5.7 Hz), 8.56 (s, 1H, ArH), 8.62 (s, 1H, ArH), 8.83 (s, 1H, ArH); 13C NMR (CDCl$_3$, 75 MHz): δ (ppm) 27.62, 110.57, 124.70, 125.35, 125.81, 126.55, 127.76, 127.90, 128.30, 128.47, 128.56, 129.03, 129.23, 130.08, 131.48, 131.57, 132.50, 134.36, 144.78.

3. RESULTS AND DISCUSSIONS

3.1 Photophysical properties

The photophysical properties of compound BIQCH$_3$ and its derivatives 1–4 are depend on entire Benz[g]indolo[2,3-b]quinoxaline core and substituents on its second position. The photophysical studies were performed on the 10$^{-5}$ M solution of BIQCH$_3$ and its derivatives 1–4 in toluene and thin solid film respectively using UV–Vis absorption and fluorescence spectroscopy. Thin films of BIQCH$_3$ and its derivatives 1–4 was prepared by spin coating method using 10$^{-3}$ M solution of BIQCH$_3$ and its derivatives 1–4 in toluene on silica quartz plates. Bas ic photophysical characteristics such as the absorption maxima (λ_{Abs}), fluorescence maxima (λ_{Em}), molar extinction coefficient (ε), optical band gaps ($E_{\text{g,opt}}$), Stokes shift (ν_{Abs} $-$ ν_{Em}) and fluorescent quantum yield (ϕ_{F}) of the molecules were determined and pertinent data is summarized in Table 1 and the spectral profiles are displayed in Figure 1 and 2.

The absorption spectra of BIQCH$_3$ and its derivatives 1–4 are dominated by the intense overlapping bands with λ_{Abs} below 300 nm are due n–π^* transition originating from electron donating indole unit and 311–396 nm mainly due to π–π^* transition arising from entire Benz[g]indolo[2,3-b]quinoxaline core. Further, a lower intensity absorption broad band above 400 nm observed which may be due to charge transfer between the electron–donating indole and the electron–accepting benzo[g]quinoxaline core. In BIQCH$_3$NO$_2$ (4) intensity of π–π^* transition and charge transfer transition is slightly high as compared to other derivatives suggesting better charge transfer due to electron withdrawing NO$_2$ group.

The absorption spectra for all the compounds in thin films are found to be slightly broader in nature as compared to solution form and this may be due to intermolecular aggregation of the molecules in the solid state. However peaks are distinct and of nearly same order relative to solution form.
Optical band gap (E_{g}^{opt}) for the derivatives are calculated from the solution state absorption and excitation spectra and are in the range 2.53–2.58 eV (Table 1). Molar extinction coefficients (ε) of the derivatives are recorded at λ_{max} value obtained from absorption spectra and are high in the range 17741–27797 which indicates that the long wavelength band of the absorption spectrum is a charge transfer band through the $\pi-\pi^*$ transition.

Table 1: Photophysical data of BIQCH$_3$ and its derivatives 1–4

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{abs} (nm)a</th>
<th>λ_{emi} (nm)a</th>
<th>εb</th>
<th>E_{g}^{opt} (eV)c</th>
<th>Stoke shiftd (cm$^{-1}$)</th>
<th>Φ_Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sol</td>
<td>film</td>
<td>sol</td>
<td>film</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIQCH$_3$</td>
<td>296,372,393,429</td>
<td>322,417,477</td>
<td>505</td>
<td>595</td>
<td>17741</td>
<td>13863</td>
</tr>
<tr>
<td>BIQCH$_3$CH$_3$</td>
<td>298,375,396,439</td>
<td>298,396,479</td>
<td>521</td>
<td>597</td>
<td>27797</td>
<td>14363</td>
</tr>
<tr>
<td>BIQCH$_3$Br</td>
<td>300,311,376,439</td>
<td>332,424,488</td>
<td>515</td>
<td>596</td>
<td>17864</td>
<td>13915</td>
</tr>
<tr>
<td>BIQCH$_3$NO$_2$</td>
<td>291,365,396,428</td>
<td>285,365,491</td>
<td>507</td>
<td>590</td>
<td>18155</td>
<td>14640</td>
</tr>
</tbody>
</table>

aRecorded in 10^{-5} mol L$^{-1}$ toluene and 10^{-3} mol L$^{-1}$ in thin solid film form.
bExtinction coefficient (L$^{-1}$mol$^{-1}$cm$^{-1}$) measured in toluene (10^{-5} mol L$^{-1}$).
cOptical bandgap estimated from the optical edge of solution form. ($E_{g}^{opt} = \frac{1240}{\lambda_{\text{opt edge}}}$) eV
dStokes shift calculated from absorption and emission wavelength observed in solution form.
eQuantum yield with reference to Alq$_3$ ($\Phi_F = 0.16$ in benzene) [25].

BIQCH$_3$ and its derivatives 1–4 emits in green region with λ_{em} at 505–521 nm (Fig. 2 (a)) upon excitation at their corresponding absorption maxima in toluene and in thin film form they emit in yellow region with λ_{em} at 590–597 nm (Fig. 2 (b)). The fluorescence spectra of BIQCH$_3$ and its derivatives 1–4 in thin solid film are nearly same order relative to solution form (Fig. 2 (b)). A significant bathochromic shift of 80 to 90 nm in thin solid film is observed. Red shift in thin film form of BIQCH$_3$ and its derivatives 1–4 is may be due to intermolecular aggregation of molecules in thin solid form.

Stokes shift ($\nu_{\text{Abs}} - \nu_{\text{Em}}$) indicates the difference in the structure and properties of the fluorescent molecule between ground and the excited states. The stokes shifts (cm$^{-1}$) were determined by Eq. (1),

\begin{align*}
\text{Stokes shift} & = \frac{1240}{\lambda_{\text{opt edge}}} - \nu_{\text{Abs}} - \nu_{\text{Em}}.
\end{align*}
\[
(v_{\text{Abs}} - v_{\text{Em}}) = \left(\frac{1}{\lambda_{\text{Abs}}} - \frac{1}{\lambda_{\text{Em}}}\right) \times 10^7
\]
(1)

The molecules show Stokes shifts with high values of 13863–14640 cm\(^{-1}\) in toluene and are recorded at \(\lambda_{\text{max}}\) value obtained from absorption spectra and fluorescence spectra, ensuring that there is no re-absorption of the emitted radiation.

Figure 1: Normalized UV–Vis absorption spectra of BIQCH\(_3\) and its derivatives 1–4 in toluene solution (10\(^{-5}\) mol L\(^{-1}\)) (a) and in thin solid film form (b).

Figure 2: Normalized Fluorescence spectra of BIQCH\(_3\) and its derivatives 1–4 in toluene solution (10\(^{-5}\) mol L\(^{-1}\)) (a) and thin solid film form (b).

Fluorescence quantum yield is an important parameter for the characterization of optical materials to be used in OLEDs. The fluorescence quantum yield of the BIQCH\(_3\) and its derivatives 1–4 were calculated using tris(8-hydroxyquinolinato)aluminium(III) (Alq\(_3\)) (\(\phi_F = 0.16\) in benzene) [25] as standard according to Eq. (2),

Quantum efficiency \(\phi_F = \phi_{\text{ref}} \left(\frac{S_{\text{ samp}}}{S_{\text{ ref}}} \right) \left(\frac{A_{\text{ samp}}}{A_{\text{ ref}}} \right) \left(\frac{\eta_{\text{ samp}}^2}{\eta_{\text{ ref}}^2} \right)\)
(2)
Where S_{ref}, A_{ref}, η_{ref} and S_{sample}, A_{sample}, η_{sample} represent the integrated emission band area, the absorbance at the excited wavelength, and the refractive index of the solvent, respectively for the standard reference and the sample. The quantum yields of the BIQCH$_3$ and its derivatives 1–4 are in the range 0.60–0.68 (Table 1).

The material performance for electroluminescence applications are evaluated by comparing the emission color by means of color coordinates. The CIE chromaticity coordinates of the BIQCH$_3$ and its derivatives 1–4 are determined using the emission spectra of the derivatives excited at 300 nm in thin film. The obtained CIE coordinates are located in the yellow green region. The CIE coordinates and chromaticity diagram are depicted in Table 2 and Figure 3 respectively.

Thus, the photophysical parameters indicate that the BIQCH$_3$ and its derivatives 1–4 are potential candidates for the fabrication of OLEDs.

Table 2: CIE coordinates of compounds 1–4.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CIE coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>BIQCH$_3$</td>
<td>0.444</td>
</tr>
<tr>
<td>BIQCH$_3$CH$_3$</td>
<td>0.416</td>
</tr>
<tr>
<td>BIQCH$_3$Br</td>
<td>0.465</td>
</tr>
<tr>
<td>BQCH$_3$NO$_2$</td>
<td>0.438</td>
</tr>
</tbody>
</table>

Figure 3: Chromaticity diagram of BIQCH$_3$ (1) (a) and BIQCH$_3$CH$_3$ (2) (b) in thin solid film. (For BIQCH$_3$Br (3) and BIQCH$_3$NO$_2$ (4) see supporting information).

3.2 Electrochemical properties

Cyclic voltammetry was used to study the redox behavior of BIQCH$_3$ and its derivatives 1–4 and to determine their ionization potential (HOMO) and electron affinity (LUMO) energy levels. The HOMO
and LUMO energy levels of the materials are very crucial parameters for most of the electro optical devices, which guides the charge transport mechanics. The HOMO and LUMO of BIQCH₃ and its derivatives 1‒4 lies in the range of 5.66–5.83 eV and 2.87–3.15 eV respectively. The observed parameters are reported in Table 3. The cyclic voltammogram are displayed in Figure 4.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>E_{ox}^{peak} (V)</th>
<th>E_{red}^{peak} (V)</th>
<th>HOMO (eV)</th>
<th>LUMO (eV)</th>
<th>E_g^{EC} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIQCH₃</td>
<td>1.33</td>
<td>−1.54</td>
<td>−5.77</td>
<td>−2.87</td>
<td>2.90</td>
</tr>
<tr>
<td>BIQCH₃CH₃</td>
<td>1.26, 1.65</td>
<td>−1.45, −1.85</td>
<td>−5.66</td>
<td>−2.96</td>
<td>2.70</td>
</tr>
<tr>
<td>BIQCH₃Br</td>
<td>1.33, 1.72</td>
<td>−1.39, −1.81</td>
<td>−5.73</td>
<td>−3.02</td>
<td>2.71</td>
</tr>
<tr>
<td>BIQCH₃NO₂</td>
<td>1.43, 1.70</td>
<td>−1.26, −1.45, −1.58, −1.89</td>
<td>−5.83</td>
<td>−3.15</td>
<td>2.68</td>
</tr>
</tbody>
</table>

E_{ox}^{peak} oxidation peak potential against Fc/Fc⁺.

E_{red}^{peak} reduction peak potential against Fc/Fc⁺.

E_g^{EC} calculated from $E_g^{CV} = E_{HOMO} - E_{LUMO}$.

On anodic sweep BIQCH₃ (1) show one irreversible peak and rest others show two irreversible peaks around 1.26–1.72 eV and which is may be due to oxidation of indole unit. On cathodic sweep BIQCH₃ (1) show one reversible peak and BIQCH₃CH₃ (2) and BIQCH₃Br (3) shows two reversible peaks which may be correspond to formation of mono and diradical anion of quinoxaline unit [29]. BIQCH₃NO₂ (4) shows four irreversible reduction peak and peak at −1.26 eV is may be due to reduction of nitro group.

Figure 4: The cyclic voltammogram of BIQCH₃ (1) (a) and compounds 2–4 (b) (10^{-3} mol L⁻¹) measured in dry CH₂Cl₂ solution against ferrocene/ferrocenium.
Increase in LUMO energy value is observed on substituting second position of BIQCH$_3$ (1) with electron withdrawing groups like –Br and –NO$_2$ (compounds 3 and 4) is observed. This increase is in LUMO energy values of molecules BIQCH$_3$Br (3) and BIQCH$_3$NO$_2$ (4) is due to increase in electron deficiency of electron rich indole unit and hence increases electron accepting property of quinoxaline unit. BIQCH$_3$Br (3) and BIQCH$_3$NO$_2$ (4) may acts electron transporting material since their LUMO values are found above 3.0 eV [30]. The energy band gap determined from the cyclic voltammetry measurements are in range of 2.68‒2.90 eV and are comparable with the optically calculated band gap.

3. Thermal properties

The electroluminescence devices containing π–conjugating organic materials should withstand temperature as high as 80 °C [31,32]. The stability and lifetime of the device can be improved by possessing material with high thermal stability. The thermal stability of BIQCH$_3$ and its derivatives 1–4 was determined by Thermo gravimetric analysis (TGA) at the temperature range of 30–1000 °C at a constant heating rate of 10 °C min$^{-1}$ under nitrogen atmosphere. While the melting point of target molecules were less approximately determined by open capillary method. The observed TGA parameters for BIQCH$_3$ and its derivatives 1–4 are reported in Table 4. TGA thermograms and DTA Plots are displayed in Figure 5(a) and Figure 6. The derivative thermogram curves Figure 5(b) show two narrow derivative peaks indicating high decomposition temperature with T_{max} in the range of 325–341°C and 501–550°C respectively.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>T_m(°C)a</th>
<th>T_d(°C)b</th>
<th>T_{max}(°C)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIQCH$_3$</td>
<td>238</td>
<td>260 (290)</td>
<td>325, 521</td>
</tr>
<tr>
<td>BIQCH$_3$CH$_3$</td>
<td>215</td>
<td>274 (300)</td>
<td>341, 550</td>
</tr>
<tr>
<td>BIQCH$_3$Br</td>
<td>274</td>
<td>248 (290)</td>
<td>329, 501</td>
</tr>
<tr>
<td>BIQCH$_3$NO$_2$</td>
<td>>300</td>
<td>190 (220)</td>
<td>336, 525</td>
</tr>
</tbody>
</table>

aMelting point (Open capillary Method)
bDecomposition temperature [5% and 10% (in parentheses) weight loss] derived by TGA.
cDerivative weight loss derived by TGA.

The DTA plot exhibit clear endothermic melting peak for all the prepared compounds except BIQCH$_3$NO$_2$ (4) and melting points obtained by open capillary method are in close agreement with DTA endothermic peaks.

TGA study reveals that the BIQCH$_3$ and its derivatives 1–4 exhibit good thermal stability and show two step thermal decomposition process. First step is may be due to loss of substituents at second position of indole unit and second step may be due to loss of entire Benz[g]indolo[2,3-b]quinoxaline backbone. The decomposition temperature corresponding to 5% and 10% weight loss were in the range of 190–274 °C and 220–300 °C respectively. The order of thermal stability among the BIQCH$_3$ and its
derivatives \(1-4\) is \(4<3<1<2\) (Table 4). Despite being relatively low molecular weight molecules, prepared compound show amorphous nature and high decomposition temperatures suggesting that they have high thermal stability and beneficial for the fabrication of amorphous thin film.

Figure 5: TGA thermogram (a) derivative weight loss (b) of BIQCH\(_3\) and its derivatives \(1-4\) under nitrogen atmosphere at normal pressure, heating rate, \(10^0\) C/min\(^{-1}\).

Figure 6: DTA thermogram of BIQCH\(_3\) and its derivatives \(1-4\) under nitrogen atmosphere.

4. CONCLUSIONS

BIQCH\(_3\) and its derivatives \(1-4\) have been prepared with good yield with optimum bandgap which is required for organic light emitting diodes (OLEDs) applications. The photophysical, electrochemical and thermal properties of the compounds are depend on Benz[g]indolo[2,3-b]quinoxaline core and substituents on its second position of indole unit. BIQCH\(_3\) and its derivatives \(1-4\) emit in green and yellow color region in toluene and in solid state respectively. The electrochemical investigation of compounds show that the LUMO level increases on introduction of electron withdrawing group at second position of BIQCH\(_3\). Further electrochemical bandgap are in close agreement with optical bandgap suggesting efficient charge separation and transportation. Thermal properties revealed that the derivatives have high melting point and good thermal stability. Thus above results indicate that the prepared molecules are promising candidate for OLED applications. Further, work is in progress in the direction of increasing LUMO energy value and decreasing bandgap by functionalization at second position of indole unit of Benz[g]indolo[2,3-b]quinoxaline core.
ACKNOWLEDGEMENT

The authors are greatly thankful to Micro-Analytical Laboratory, Department of Chemistry, University of Mumbai for providing Instrumental facilities. One of the authors (Azam M. Shaikh) is grateful to University Grants Commission, India for providing fellowship.

REFERENCES

The authors declare no conflict of interest

© 2015 By the Authors; Licensee Borderless Science Publishing, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0