Dual Fluorescence of 4,4'-sulfonyldiphenol, 3,3'-dimethyl 4,4'-sulfonyldiphenol, 4,4'-sulfonyldibenzoic acid: Effects of cyclodextrin complexation

N. Rajendiran* T.Mohandass and J. Thulasidhasan Department of Chemistry, Annamalai University, Annamalai Nagar, Tamilnadu- 608 002, India Email: drrajendiran@rediffmail.com

Table S1. Absorption and fluorescence maxima (nm) of SDP, DMSP and SDBA with different α -CD and β -CD concentrations.

Concentratio n of CD (M)	SDP				DMSP					SDBA								
	α-CD			β-CD			α-CD			β-CD			α-CD			β-CD		
	λ_{abs}	log ε	λ_{flu}	λ_{abs}	log ε	$\lambda_{\rm flu}$	λ_{abs}	log ε	λ_{flu}									
0 (without	258	4.61	324	260	4.48	325	261	4.57	322	262	4.53	322	251	4.17	291	251	4.10	308
CD)	234		427	234		427	237		447	237		445	234		325	234		360
															435			440
0.002	258	4.60	323	261	4.55	326	261	4.58	322	262	4.57	323	252	4.17	291	252	4.13	309
	234		441	235		464	237		448	238		448	234		322	234		363
															435			445
0.004	258	4.59	324	260	4.56	326	262	4.57	325	262	4.58	323	252	4.16	290	252	4.13	310
	234		447	235		459	237		448	238		449	234		320	234		363
															435			445
0.006	258	4.59	324	261	4.56	326	261	4.63	322	261	4.64	322	252	4.14	290	252	4.32	310
	234		440	235		457	237		449	238		449	234		320	234		363
															435			445
0.008	259	4.58	324	261	4.61	326	261	4.63	324	261	4.57	323	252	4.11	290	252	4.32	310
	234		444	235		457	237		449	238		450	234		320	234		363
															435			445
0.010	259	4.57	324	260	4.63	326	262	4.56	326	262	4.53	325	252	4.17	291	252	4.10	310
	234		444	235		456	237		449	238		450	234		320	234		363
															435			445
Excitation wavelength (nm)			260			260			260			260			260			260
K (M ⁻¹)	251		166	381		95	844		236	1564		1508	185		150	2369		2985
$\Delta G (-ve)$ (kJ mol ⁻¹)	3.32		3.07	3.58		2.74	4.05		3.28	4.42		4.40	3.14		3.01	4.67		4.81

Table S2. Energetic features, thermodynamic parameters and HOMO-LUMO energy calculations for SDBA, SDP, DMSP and its inclusion complexes by PM3 method.

Properties	SDP	DMSP	SDBA	α-CD	β-CD	SDP/ α-CD	SDP/ β-CD	DMSP/ α-CD	DMSP/ β-CD	SDBA/ α-CD	SDBA/ β-CD
E _{HOMO} (eV)	-9.72	-9.72	-10.66	-10.37	-10.35	-9.75	-9.58	-9.46	-9.34	-10.64	-10.56
E _{LUMO} (eV)	-0.49	-0.44	-1.39	1.26	123	-0.97	-0.62	-0.95	-0.71	-1.45	-1.42
E _{HOMO} – E _{LUMO} (eV)	-9.32	-9.28	-9.27	-11.63	-11.58	-8.78	-8.95	-8.51	-8.63	-9.18	-9.13
μ	-5.36	-5.08	-6.02	-4.56	-4.56	-5.36	-5.10	-5.20	-5.02	-6.05	-5.99
η	-4.39	-4.64	-4.63	5.81	5.79	-4.39	-4.47	-4.25	-4.31	-4.59	-4.56
ω	-3.28	-2.78	-3.92	1.78	1.79	-3.28	-2.91	-3.18	-2.93	-0.21	-3.94
S	-0.22	-0.21	-0.21	0.17	0.17	-0.22	-0.22	-0.23	-0.23	-3.99	-0.21
Dipole moment (D)	5.7079	5.881	1.146	11.34	12.29	15.087	3.03	16.45	15.43	4.7329	7.568
E*	-98.132	-114.77	-180.65	-1247.62	-1457.63	-1353.17	-1578.0	-1369.85	-1586.53	-1439.28	-1655.93
ΔE^*						-7.41	-22.23	-7.45	-14.12	-11.01	-17.64
G *	-2.665	18.574	-77.37	-676.36	-789.52	-660.07	-793.32	-641.58	-766.31	-742.28	-861.257
$\Delta G *$						18.94	-1.13	16.20	4.63	11.44	5.63
H *	35.96	56.475	-31.37	-570.84	-667.55	-540.28	-651.82	-518.87	-623.81	-611.624	-714.48
ΔH^*						-5.40	-20.23	-4.51	-12.73	-9.40	-15.55
S **	0.129	0.14	0.154	0.35	0.40	0.401	0.474	0.411	0.478	0.43	0.49
ΔS^{**}						-0.081	-0.064	-0.088	-0.077	-0.069	-0.070
ZPVE*	123.88	158.89	136.52	635.09	740.56	762.23	867.43	798.54	902.058	774.09	880.35

* kcal mole⁻¹; ** kcal/mol-Kelvin, ZPVE- Zero point vibrational energy

Table S3. Geometrical parameters of SDP, DMSP and SDBA before and after inclusion with α -CD and β -CD for the most stable inclusion complexes.

	SDP	SDP/	SDP/ β-CD		DMSD	DMSP/	DMSP/ β-CD		SDDA	SDBA/	SDBA/
		α-CD			DMSP	α-CD			SDDA	a-CD	β-CD
Bond length (Å)											
H_1-O_2	2.65	2.68	2.92	H_1-O_2	2.67	2.61	2.55	O ₁ -H ₅	2.65	2.62	2.75
H_4-O_1	2.66	2.58	2.59	H_3-O_1	2.63	2.70	2.85	O_2 - H_1	2.65	2.58	3.02
C4-O3	1.36	1.35	1.35	O ₃ -H ₁₃	2.78	2.72	2.55	O ₃ -O ₄	2.11	2.19	2.12
H_1 - H_8	3.00	2.98	3.30	O ₄ -H ₉	2.97	2.81	2.83	O ₆ -H ₇	2.64	2.88	2.72
H ₃ -O ₃	2.57	2.72	2.58	H_1 - H_6	3.14	3.63	3.20	H9-H6	3.01	3.35	2.92
Bond angle (°)											
C_1 -S- O_1	109.4	108.6	110.5	C_1 -S- O_1	109.37	109.01	109.31	C_1 -S- O_1	109.40	107.31	108.32
O_1 -S- O_2	117.7	117.7	115.8	$C_4-O_3-H_{14}$	108.09	108.08	108.18	C_1 -S- C_{12}	99.09	101.95	100.19
C4-O3-H10	108.2	108.3	108.6	C_1 -S- C_{12}	99.84	101.73	100.60	H_1 - O_2 - H_8	68.80	73.10	61.70
C9-O4-H9	108.2	109.2	109.0	H_1 - O_2 - H_6	73.33	87.59	71.90	$O_4-C_{13}-O_3$	110.86	108.02	116.92
Dihedral angle (°)											
$C_3-C_4-O_3-H_{10}$	178.8	179.14	173.80	C_1 - C_2 - C_3 - C_{13}	179.93	179.47	176.67	$S-C_1-C_2-C_3$	179.34	172.80	179.39
C_2 - C_3 - S - O_1	157.0	148.39	179.90	C_1 -S- C_{12} - C_7	94.19	118.36	105.71	$C_6-C_1-S-O_2$	155.92	175.76	165.65
O ₂ -C ₇ -C ₈ -C ₉	166.8	170.27	169.79	C8-C9-O4-H7	178.63	167.85	178.40	O_1 -S- C_{12} - C_{11}	155.79	179.46	176.23

Fig. S1 Fluorescence decay cures of (a) SDP, (b) DMSP and (c) SDBA in water and 0.01 M CD solution.

Fig. S2 Upper and side views of PM3 optimized structures of (a) SDP/ β -CD, (b) SDBA/ β -CD, and (c) DMSP/ β -CD inclusion complex.

Fig. S3 HOMO, LUMO molecular orbital pictures of (a) SDP-HOMO, (b) SDP-LUMO, (c) SDBA-HOMO, (d) SDBA LUMO, (e) DMSP-HOMO and (f) DMSP -LUMO.