Emerging Energy Applications of Two-Dimensional Layered Materials

Dattatray J. Late1*, Chandra Sekhar Rout2*, Disha Chakravarty1 and Satyajit Ratha2

1Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
2School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, 751013, India

*Corresponding Author: Email: dj.late@ncl.res.in, datta099@gmail.com, csrout@gmail.com

Received: February 19, 2015 Revised: March 18, 2015 Accepted: March 18, 2015 Published: March 22, 2015

Abstract: Atomically thin semiconducting transition metal dichalcogenides (TMDCs) layered materials have recently been emerged as an exciting area of research due to accessibility for easy synthesis using various chemical and physical methods. These two-dimensional (2D) layered materials with single layer have direct and wide band gap due to which, they are more suitable for nanoelectronics and optoelectronics device applications. Here, we present a review of the energy related aspects of atomically thin layered materials like MoS2, WS2, MoSe2, WSe2, InSe, GaSe, GaTe, MoTe2, WTe2 etc. for supercapacitor, solar cell, lithium ion battery and water splitting application. By significantly assessing various materials and comparing their performances with challenging technology, the advantages and disadvantages of this promising area of energy materials are recognized, which may provide guidelines for future progress.

Keywords: 2D Nanosheets, Chalcogenides, supercapacitor, Solar cell, Lithium ion battery and Water splitting.

1. INTRODUCTION

Bringing forth a sustainable and renewable energy alternative for the future has become a great challenge for scientists, engineers and technologists due to the enormous consumption of global energy and its connection with some critical issues such as climate change. Solar and wind energies are some of the naturally occurring sources which have already provided a well-known platform to generate renewable sources of energy. Among the various energy storage systems, chemical storage devices such as batteries and electrochemical capacitors play major roles for the storage of electrical energy both efficiently and in an environment friendly way. In the last few decades, efforts have been made for an alternative energy storage conversion with high power efficiency and energy densities because of the ever increasing environmental problems due to increased demand for energy and the up-coming diminution of natural resources.1-4 The 2D layered transition metal dichalcogenide semiconductor materials such as metal oxides and metal chalcogenides have gained the renewed interest. TMDCs consist of hexagonal layers of metal atoms (M= Mo, W, Ga, V, Sn, Ta) sandwiched between two layers of chalcogen atoms (X
transition metal dichalcogenides (TMDCs) have been demonstrated by many researchers to show superior electronic, magnetic as well as electrochemical properties which have attracted great attention for energy related device applications such as supercapacitor, solar cell, lithium ion battery and water splitting to generate H2. Nanomaterials have excellent properties which enable them to play a crucial role in the rapid progress of the fields of science and technology. So far from the literature, it has been realized that 2D nanomaterials exhibit enhanced electrical, optical and mechanical properties due to their flat geometry. Graphene is already known to show exemplary capability for being highly stretchable (up to 20% elastically), having a significantly high carrier mobility ~ 10^5 cm²/Vs at 300K, transparency ~ 97 %, low density ~ 2 g/cm³, high specific area ~ 2630 m²/g, lightest charge carriers (zero rest mass), low cost. However the use of graphene has been way too restricted in energy storage device applications due to the absence of a well-defined band-gap. The structures of crystalline TMDCs can be divided into two distinct categories, namely, layered structures with van der Waals gaps representing about two-thirds of TMDCs and otherwise. TMDCs of groups IV

Figure 1: 2D Transition metal dichalcogenides. (Image taken from ref. 58 Reproduced by permission of the Nature Nanotech).
Figure 2: Large and small spheres represent the M and X atomic species, respectively. A grayscale (color coding) is used to distinguish the position of the atoms in the two MX$_2$ layers. The full lines demarcate the unit cell (Image taken from ref. 82 Reproduced by permission of the American Physical Society).

(d2 electronic configuration), V (d3), VI (d4) and VII (d5) metals tend to form layered structures, while non-layered compounds (e.g., pyrite or marcasite structures) predominantly occur for groups VIIIa–VIIIc (d6–d8) metals. The metal–dichalcogenides (MX$_2$) layered structures arise from the stacking of hexagonally packed planes. The coordination around the metal centers for TMDC layered structures can be either trigonal prismatic (e.g., MoS$_2$, NbS$_2$) or octahedral (e.g., HfS$_2$, PtS$_2$). While bulk MoS$_2$ is an indirect band-gap semiconductor with a band-gap of ~1.2 eV, monolayer MoS$_2$ is a direct band-gap semiconductor with a band-gap of 1.8–1.9 eV.$^{52–54}$ Such a transition from an indirect to a direct band-gap semiconductor is also observed in other inorganic layered materials, making such MX$_2$ monolayers in nanoelectronics applications superior to pristine graphene that has no band-gap. Intriguingly, the presence of several conduction and valence band valleys in graphene could open up the way towards the realization of valleytronics devices, based on the possibility of selectively confining the charge carriers in a restricted portion of the momentum space.$^{60–62}$ As TMDCs have well defined band-gaps which also can be tuned by controlling the number of layers. These layered materials also have a wide absorption range such as visible, infrared, ultraviolet and near infrared, so they possess this unique property of getting self-excited...
Figure 3: Electronic properties and band structure of TMDCs. Band structures calculated from first-principles density functional theory (DFT) for bulk and monolayer MoS$_2$ (a) and WS$_2$ (b). (Image taken from ref. 58 reproduced with permission from Nature Nanotechnology).

under light irradiation. Recent experimental and theoretical investigations on MoS$_2$ demonstrate that the phonon dispersion relations63 as well as the band gap and exciton binding energies$^{64-66}$ show interesting quantum confinement effects67, when the layer thickness is reduced. Secondly, the large surface area of 2D graphene-analogue materials could supply more surface active sites and increase the adsorption of the substrates. The 2D planar structure, large surface area, and especially its insignificant thickness could be beneficial for reducing the recombination of the photo-generated electrons and holes. Therefore, the layered TMDC materials show interesting photoelectric and catalytic properties68,69.

2. Properties of Layered Semiconducting TMDCs:

2.1 Physical Properties of TMDCs:

The semiconducting dichalcogenide material, MX$_2$, is a promising material for electronic applications because of its high stability and transport characteristics. Unlike graphene, these compounds don’t actually consist of a single layer of atoms. Rather, they comprise a layer of transition metal atoms sandwiched between two layers of chalcogen atoms. Hexagonal MoS$_2$70,71, WS$_2$72,73, MoSe$_2$72,74, WSe$_2$75, GaS76,77, GaSe76,77 and etc. have layered structures with each layer having X–M–X or X-M-M-X kind of structural arrangement. Natural or synthetic MX$_2$ crystallizes in two different polytypisms, 2H (space group: P6$_3$/mmc) and 3R (space group: R3m), with the former being the dominating one. In both phases the M atom in one layer is aligned over the X atom in the layer beneath, but the lateral registry is different: in 2H, the X atoms are fully eclipsed, whereas in the 3R geometry, the X atoms are staggered, i.e., one X is eclipsed by the M atom above and the second one is located below the hexagonal hollow site13,78,79, resulting in the staggered AB stacking as shown in Figure 2.

The high-symmetry stacking orders are depicted in Figure 2: (i) AA (point group D$_{3h}$), eclipsed stacking with M over M and X over X; (ii) AA (point group D$_{3d}$), eclipsed stacking with M over X, characteristic of the 2H phase; (iii) AB (point group D$_{3d}$), staggered stacking with X over X; (iv) AB (point group C$_{3v}$),
staggered stacking with X over M, characteristic of the 3R phase; (v) AB (point group D_{3d}), staggered stacking with M over M. It is readily seen that one can transform one stacking polytypism into another by horizontal layer sliding and/or by rotation around the vertical axis. Taking MoS_{2} as an example, naturally occurring MoS_{2} has two polytypes, 2H and 3R, both having the trigonal prismatic coordination. The structure of MoS_{2} consists of an atomic plane of Mo sandwiched between two atomic planes of S in a trigonal prismatic arrangement S–Mo–S. The bond distance of S–Mo is 1.54 Å and S–S is 3.08 Å.

2.2 Electronic band Structure of TMDCs:

Many TMDCs have band structures that are similar in their general features, as shown by first principles and tight-binding approximations and measured using a variety of spectroscopic tools. In general, MX_{2} compounds are semiconducting whereas VX_{2}, NbX_{2} and TaX_{2} are metallic. The electronic band structure properties of semiconducting TMDCs also depend on the number of layers due to quantum confinement effects and changes in symmetry. Several groups have predicted and verified the transition from an indirect band gap at the Γ-point to a direct band gap at the K-point of the Brillouin zone as the thickness of semiconducting TMDCs is reduced to a single layer. In particular, bulk MoS_{2} has an indirect band gap of 1.2 eV, whereas single layer MoS_{2} has a direct band gap of 1.9 eV as shown in Figure 3.

This leads to an observation of enhanced photoluminescence (PL) in case of MoS_{2}. Similar evidence for a direct band gap transition has also been reported for single layer MoSe_{2}, WS_{2}, and WSe_{2}. At the Γ-point, the bandgap transition is indirect for the bulk material, but gradually shifts to be direct for the monolayer. The direct excitonic transitions at the K-point remains relatively unchanged with layer number. The change in the band structure with layer number is due to quantum confinement and the resulting change in hybridization between P_{z} orbitals on S atoms and d orbitals on Mo atoms. The electronic distributions are also spatially correlated to the atomic structure. For MoS_{2}, DFT calculations show that the conduction-band states at the K-point are mainly due to localized d orbitals on the Mo atoms, located in the middle of the S–Mo–S layered structure and relatively unaffected by interlayer coupling. However, the states near the Γ-point are due to combinations of the antibonding P_{z}-orbitals on the S atoms and the d orbitals on Mo atoms, and have a strong interlayer coupling effect.

Therefore, as the layer number changes, the direct excitonic states near the K-point are relatively unchanged, but the transition at the Γ-point shifts significantly from an indirect to direct. All MX_{2} compounds are expected to undergo a similar indirect band-gap to direct band-gap transformation with decreasing layer numbers, covering the bandgap energy range 1.1–1.9 eV. The electronic band structures of semiconductors directly influence their ability to absorb and emit light. For semiconductors with a direct bandgap, photons with energy greater than the bandgap energy can be readily absorbed or emitted. For indirect bandgaps, an additional phonon must be absorbed or emitted for the sake of conservation of crystal momentum, making the photon absorption or emission process much less efficient.

2.3 Mechanical properties of TMDCs:

The TMDCs attract great interest and importance to examine the mechanical properties of the other 2D nanomaterials. Mechanical properties of TMDCs materials are usually defined by the unit-cell geometry, the relative density (\(\rho = \rho/\rho_s \)) and the solid material properties. Castellanos-Gomez et al. measured the elastic properties of freely suspended MX_{2} nanosheets, with thicknesses ranging from 5 to 25 layers. The measurement was performed by using an AFM tip, which applied load at the center of the
Figure 4: Room temperature Raman spectra of a few layers (a) MoS$_2$ and (b) WS$_2$. Temperature dependent Raman spectra of few-layer samples of (c) MoS$_2$ and (d) WS$_2$. (Image taken from ref.119, Reproduced by the permission of AIP from Appl. Phy. Lett. 2014).

suspended region of a MoS$_2$ nanosheet. The displacement of the AFM scanning piezo and ΔZ_c is the deflection of an AFM cantilever. It is reported that the average Young’s modulus of the MoS$_2$ sheet is exceptionally high, i.e. $E = 0.33\pm0.07$ TPa, which is comparable to that of graphene oxide. This value is also higher than the Young’s modulus of bulk MoS$_2$ (i.e. 0.24 TPa), most likely resulting from the lower density of stacking faults present in thinner flakes compared to the bulk crystal. Moreover, these nanosheets exhibited low pre-strain and could stand elastic deformations up to tens of nanometers without breaking. Another work carried out by Bertolazzi et al shows a Young’s modulus of 0.27 TPa for a monolayer MoS$_2$, lower than that of multi-layers, but higher than that of the bulk form. It was also found that the measured strength of individual single-layer MoS$_2$ was in the range of 6–11% of its Young’s modulus, which is at the theoretical upper limit of a material’s breaking strength (i.e. The intrinsic strength of interatomic bonds in the crystal). The excellent elastic properties of single-layer and multi-layer dichalcogenides nanosheets make them attractive semiconductors for flexible electronic and optoelectronic devices, as well as for composite films.

2.4 Optical and vibrational properties of TMDCs:

When the thickness of TMDCs is reduced from bulk to monolayer, an indirect to direct band gap crossover, which is a ubiquitous effect in layered semiconductors. During this crossover, the band gap
becomes degenerate for bilayer WSe$_2$, which is also similar to the soft crossover observed in MoSe$_2$. The Raman spectra of bulk WSe$_2$ possesses a prominent peak at 250 cm$^{-1}$ and flakes thinner than quadrilayers exhibit an additional peak at \sim10 cm$^{-1}$ more than that of the first order peak116,117. Phonon dispersion calculations indicate that the E$_{2g}$ and A$_{1g}$ modes are degenerate and hence yield a strong Raman peak at 250 cm$^{-1}$ but these modes remain degenerate independent of the thickness for few layered MoS$_2$ and WS$_2$. The Raman peak positions of both A$_{1g}$ and E$_{1}^{2g}$ modes shift to lower wave-number when temperature increases from 77K to 623 K. Raman spectrum of a few layer WS$_2$ nanosheets excited with 514.5 nm laser source was rich in information which reveals many first-order and second order modes: LA (M) appears at 175 cm$^{-1}$, 2LA (M) mode appears at 352 cm$^{-1}$, E$_{1}^{2g}$ appears at 355 cm$^{-1}$, and A$_{1g}$ appears at 418 cm$^{-1}$. It is observed that the intensity of A$_{1g}$ mode is twice than that of the E$_{1}^{2g}$ mode. It is also important to note that 2LA (M) mode and E$_{1}^{2g}$ mode overlap with each other. Figures 4(a) and 4(b) show the Raman peak position shift in E$_{1}^{2g}$ and A$_{1g}$ mode as a function of temperature for a few layer of thick MoS$_2$ nanosheet sample118.

It is reported that 1% uniaxial strain which is likely to be present as a result of substrate-sample interaction119. For biaxial strain, the degeneracy is still preserved but once uniaxial strain is applied, i.e. crystal symmetry is broken, the degeneracy is lifted and the calculated phonon dispersion matches closely to experimental observations$^{57,120-122}$. The phonon structure of semiconducting TMDCs is also sensitive to the number of layers and strain as well as temperature and carrier concentration. The Raman spectra of TMDCs contain two predominant and distinct peaks : (1) The out-of-plane A$_{1g}$ mode where the top and bottom X atoms are moving out of plane in opposite directions while M is stationary; (2) The in-plane degenerate E$_{1}^{2g}$ mode where the M and X atoms are moving in plane in opposite directions. The addition of extra layers leads to stiffening of the out-of-plane phonon modes and relaxation of in-plane bonding, resulting in a blue shift of the A$_{1g}$ mode and a red shift of the E$_{1}^{2g}$ mode65,123. Both of these modes undergo a red shift as well as spectral broadening with increasing temperatures that is attributed to certain amount of harmonic contributions towards the interatomic potentials$^{124-126}$. The A$_{1g}$ mode is also sensitive to carrier density and undergoes a red shift as well as peak broadening with electron doping while the E$_{1}^{2g}$ mode remains insensitive to doping, suggesting stronger electron-phonon coupling with the out-of-plane vibrational mode127. The same effect is also evident in resonant Raman spectra of TMDCs where the intensity of the A$_{1g}$ mode is greatly enhanced under resonance conditions while the enhancement vanishes with reduced thickness due to reduced electron-A$_{1g}$ phonon coupling in thinner samples. Resonance conditions have also led to the observation of a new second-order longitudinal acoustic (LA) phonon mode, the intensity of which increases upon reduction in the sample thickness93. While the E$_{1}^{2g}$ mode remains insensitive to doping, it is very sensitive to applied strain. Applying uniaxial strain lifts the degeneracy of the E$_{1}^{2g}$ mode, leading to red shifting and splitting into two distinct peaks for strain of just 1%128. The unique electronic band structure and lattice vibration properties of TMDCs suggest new opportunities for electronic, optoelectronic, and sensing devices. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational and optical properties of single layer MX$_2$ dichalcogenides. The band-gap, mobility of single-sheet, semiconductor type and Spectral Range, responsivity of the various TMDCs are tabulated in Table 1 in detail.
Table 1. The characteristic of TMDCs semiconductor materials, the bandgap, mobility, semiconductor type, spectral range and responsivity are shown.

<table>
<thead>
<tr>
<th>TMDCs</th>
<th>Band-gap (eV)</th>
<th>Mobility of single-sheet cm²V⁻¹s⁻¹</th>
<th>Semiconductor type</th>
<th>Spectral Range</th>
<th>Responsivity (mA/W)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS₂</td>
<td>Indirect-1.29</td>
<td>517</td>
<td>n-type</td>
<td>Visible</td>
<td>7.5</td>
<td>129–132</td>
</tr>
<tr>
<td></td>
<td>Direct-1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS₂</td>
<td>Indirect-1.35</td>
<td>19</td>
<td>n-type</td>
<td>Visible</td>
<td>2.0</td>
<td>101,133–135</td>
</tr>
<tr>
<td></td>
<td>Direct-1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoSe₂</td>
<td>Indirect-1.1</td>
<td>70</td>
<td>n-type</td>
<td>UV-vis-NIR</td>
<td>10</td>
<td>135–137</td>
</tr>
<tr>
<td></td>
<td>Direct-1.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSe₂</td>
<td>Indirect-1.2</td>
<td>250</td>
<td>n-type</td>
<td>Visible</td>
<td>210</td>
<td>101,137,138</td>
</tr>
<tr>
<td></td>
<td>Direct-1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoTe₂</td>
<td>Indirect-1.00</td>
<td>170</td>
<td>p-type</td>
<td>UV-vis-NIR</td>
<td>12</td>
<td>135,139</td>
</tr>
<tr>
<td></td>
<td>Direct-1.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTe₂</td>
<td>Indirect-0.81</td>
<td>-</td>
<td>n-type</td>
<td>-</td>
<td>-</td>
<td>140,141</td>
</tr>
<tr>
<td></td>
<td>Direct-1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaTe</td>
<td>Indirect-1.13</td>
<td>0.20</td>
<td>p-type</td>
<td>Visible</td>
<td>10⁴</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Direct-1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InSe</td>
<td>Direct-1.3</td>
<td>~1000</td>
<td>n-type</td>
<td>Visible</td>
<td>12300</td>
<td>143–147</td>
</tr>
<tr>
<td>GaSe</td>
<td>Indirect-0.99</td>
<td>1.5</td>
<td>p-type</td>
<td>Visible</td>
<td>-</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Direct-2.352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Phosphorous</td>
<td>Direct-1.8</td>
<td>1000</td>
<td>p-type</td>
<td>Visible</td>
<td>-</td>
<td>148</td>
</tr>
</tbody>
</table>

The electron mobility is characterized on the basis of how fast an electron can travel through metal/semiconductor after applying an electric filed. In a semiconductor, the carrier mobility were referred for the mobility of both electron as well as hole. For a photoconductive mode, the spectral responsivity is defined as the ratio of the generated photocurrent to incident light power, which is expressed in A/W.

3. Synthesis of layered Transition metal dichalcogenides:

Literature survey reveals that till date, both physical and chemical approaches have been utilized effectively for the synthesis of TMDCs. This section gives brief overview of various recent synthesis methods of 2D materials.
Figure 5: (a) Optical micrograph of thin MoS$_2$ films deposited on the SiO$_2$/Si substrate, (b) AFM height image taken for the 8×8 µm2 area indicated by dotted lines in (a) and (c) Raman spectra of thin (nL) and bulk MoS$_2$ films. The solid line for the 2L spectrum is a double Voigt fit through data (circles for 2L, solid lines for the rest). (Image taken from supporting information of ref. 65 reproduced with the permission from the American Chemical Society).

3.1 Physical approaches

The physical approach for the preparation of TMDCs is very simple by using mechanical exfoliation of bulk crystal using the scotch tap technique, laser irradiation or ultra-sonication etc. Significantly a lot of work has been reported on each of those techniques150.

3.1.1 Micromechanical Exfoliation method

Micromechanical Exfoliation method was first used for the preparation of Single-layer nanosheets using the scotch tape technique. This method utilizes a piece of cello tape to draw a thin film. After repeated peeling from the thin film, it is ultimately stamped onto a SiO$_2$/Si substrate and the tape is carefully removed. Significant amount of work has been done during the early stages of nanosheet preparation$^{151-154}$. Lee et al.65 reported isolation of single-and few layered MoS$_2$ films from bulk crystals of 2H-MoS$_2$ (SPI, natural molybdenite) using the micromechanical exfoliation method widely adopted for preparation of graphene samples. In a typical process, a small piece of bulk crystal MoS$_2$ was put on the sticky side of a piece of adhesive tape. This was followed by repeated folding and unfolding of the tape to produce thin flakes along the tape’s surface. The tape was then pressed onto a silicon substrate covered by a 285-300 nm thick SiO$_2$ layer. After mild rubbing, the tape was removed from the substrate, leaving behind some atomically thin MoS$_2$ flakes. The size of single layers ranged from 1 to 10 µm. As can be
seen in Figure 5, even MoS$_2$ films of single-layer thickness provided high optical visibility on SiO$_2$/Si substrates.

3.2 Chemical approaches

Chemical approach is also one of the methods to exfoliate or intercalate the 2D nanomaterials by using suitable surfactants. O’Neill et al.155 group has reported dispersions with significantly increased lateral nanosheet size with an increased flake size of MoS$_2$ by choosing a suitable sonication time and using an appropriate solvent. The typical procedure is as follows, MoS$_2$ concentration experiments were performed by adding the powder to 20 mL of NMP in a 100 mL capacity, flat bottomed beaker. These samples were sonicated continuously for 60 min using a horn probe sonic tip. The beaker was connected to a cooling system that allowed for cold water (5 °C) to flow around the dispersion during sonication. They were then centrifuged at 1500 rpm for 45 min. For the concentration versus sonication time experiments, 100 mL of NMP was added to 10 g of MoS$_2$. The sonic tip was pulsed for 8s on and 2s off to avoid damage to the processor and reduce solvent heating and thus degradation. During sonication, 5 mL aliquots were removed at certain time intervals and centrifuged. A TEM image of the flakes morphology is shown in Figure 6B. The flakes look very similar to the ones shown in Figure 6A. As before, most flakes are relatively thicker with a small population (10–15%) being relatively thinner (inset). On the other hand, the micro exfoliations of transition material layered dichalcogenides are also reported well in the literatures71,126,156. A lot of work has been carried out in the

![Figure 6: TEM micrographs of size selected dispersions of MoS$_2$ nanoflakes produced by centrifugation at 300 rpm as part of (A) the normal regime, (B) the reduced centrifugation regime, and (C) the reduced centrifugation regime followed by a 100 fold dilution in NMP. The insets show examples of thinner flakes observed in each case. (Image taken from ref. 156 reproduced by the permission from the American Chemical Society).](image)
Figure 7: TEM images of MoS$_2$ layers obtained by Methods 2 and 3. c) High-resolution TEM image of layered MoS$_2$ from Method 3. d, e) Images of WS$_2$ layers from Methods 1 and 2, respectively. The bends in the layers may arise from defects. (Image taken from ref. 158 reproduced by the permission of Wiley).

preparation of MoS$_2$, WS$_2$ single layers by micro exfoliation method71,131,152,156,157 for the use in various next generation nanoelectronic devices.

Though micromechanical solvent dispersion and sonochemical exfoliation produces transition metal layered dichalcogenides of the highest quality (with least defects), the method is limited by its low productivity. Chemical exfoliation, on the other hand, possesses the advantages of bulk scale production. At the same time, it has got a lot of disadvantages like being highly toxic and its contribution towards highly exothermic reactions. It includes many methods such as reduction of TMDCs by chemical vapor deposition, physical vapor deposition, hydrothermal method, microwave method etc$^{158-161}$.

3.2.1 Intercalation or solvent assisted exfoliations

Exfoliation in solvents is also one of the novel techniques for the preparation of single layer TMDCs as well as for the complete exfoliation of MX$_2$ sheets. This is a very simple method in which the bulk sample is thoroughly dispersed in the solvent. Matte et al.157 prepared MoS$_2$ and WS$_2$ single layers by implementing various types of intercalation assisted methods. According to their procedure, the intercalation and exfoliation of MoS$_2$ and WS$_2$ were carried out in two steps. The first step was to intercalate the sulfide with lithium by soaking 100 mg of the sulfide in 10 mL of n-butyllithium in 5 mL of hexane in a nitrogen atmosphere for 72 h at 373 K. Then the intercalated samples were washed with hexane several times to remove any reacted n-butyllithium. The intercalated sample was exfoliated by ultrasonication with distilled water in a closed vial, during which profuse evolution of gas was observed and an opaque suspension of the layered sulfide was formed. The suspension was centrifuged and the
Figure 8: (a) Schematic of the CVD growth setup showing the reaction of sulphur vapor with Mo film pre-deposited on Si–SiO₂ substrate for the growth of a MoS₂ nanomembrane. (b) Major process steps involved in the synthesis of the MoS₂ nanomembrane, layer transfer, and subsequent fabrication of a Schottky-barrier solar cell. The KOH wet etching process was used to detach the MoS₂ nanomembrane from SiO₂–Si substrate. (c and d) Partially floating MoS₂ nanomembrane in KOH solution. (e) Free-floating MoS₂ nanomembrane in KOH to be transferred onto an ITO-coated glass substrate for solar cell fabrication. (Nanoscale 2012, 4, 7399-7405 (ref. 206). Reproduced by permission of the Royal Society of Chemistry (RSC).

solid product collected for further characterization. In second method, they have used molybdic acid or tungstic acid with an excess of thiourea (molybdic acid/tungstic acid: thiourea 1:48) and heated at 773 K for 3 h under nitrogen atmosphere. After 3 h, the sample was cooled to room temperature under nitrogen atmosphere. The black product obtained was used as such for further analysis. The typical TEM image of MoS₂ and WS₂ are shown in Figure 7.

Jonathan N. Coleman et al.¹⁶² have reported the synthesis of various layered compounds such as MoS₂, WS₂, MoSe₂, MoTe₂, TaSe₂, NbSe₂, NiTe₂, BN, and Bi₂Te₃ by using ultrasonication method and it can be efficiently dispersed in common solvents and can be deposited as individual flakes or formed into films. Electrical characterization of individual flakes shows n-type field-effect behavior characterized by mobilities of ~0.01 cm²/Vs, which is rather lower than the observed value for mechanically exfoliated MoS₂ flakes¹⁶³–¹⁶⁵.

3.2.2 Chemical Vapor Deposition (CVD)

CVD is being widely used in thin film based electronic industry as well as for the complete exfoliation of layered materials. It seems, a lot of interesting results have been obtained from the CVD for
the fabrication of layered nanomaterials.166 Also CVD has surged as an important method to obtain high-quality MX\textsubscript{2} films. Li \textit{et al.}167 works on an alternative route to large-scale MoS\textsubscript{2} and WS\textsubscript{2} inorganic fullerene-like nanostructures and nanoflowers by CVD techniques. Zhan \textit{et al.}168 reported synthesis of atomic-layered MoS\textsubscript{2} directly on SiO\textsubscript{2} substrates by a scalable CVD. The large-scale synthesis of an atomic-layered semiconductor directly on a dielectric layer paves the way for many facile device fabrication possibilities, expanding the important family of useful mono-layer or few-layer materials that possess exceptional properties, such as graphene and hexagonal boron nitride (h-BN). Many other works have also been reported on CVD, like chemical vapor sensing of exfoliated graphene169, controlled synthesis of nanoflakes of MoS\textsubscript{2} by CVD170 as shown in Figure 8.

Lee and co-workers have reported an alternative method for synthesizing large-area MoS\textsubscript{2} monolayer flakes using the gas-phase reaction of MoO\textsubscript{3} and S powders161. They conclude that, treatment of substrates with graphene-like molecules such as reduced graphene oxide, perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (TPAS) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) prior to deposition, assists in the layer growth. The reaction mechanism in their study is likely to be: MoO\textsubscript{3} + \(x/2\)S \(\rightarrow\) MoO\(_{3-x}\) + \(x/2\)SO\(_{2}\) and MoO\(_{3-x}\) + \((7-x)/2\)S \(\rightarrow\) MoS\(_{2}\) + \((3-x)/2\)SO\(_{2}\), where MoO\(_{2}\) during the reaction is an intermediate phase formed when \(x = 1\). However, full coverage of the substrate is a challenge using this method. Lin and co-workers have shown that wafer-scale deposition can be achieved using the same chemistry, where few-layered MoS\textsubscript{2} was obtained after direct sulfurization of MoO\(_{3}\) thin-films on sapphire substrates171.

3.2.3 Hydrothermal method

Numerous works has been done on hydrothermal methods. Liu \textit{et al.}172 have demonstrated the preparation method of coral-like \(\alpha\)-MnS–NC composite materials via a two-step reaction. First, the PVP-capped \((\text{NH}_4)_2\text{Mn}_7\text{SO}_4\text{)}_3\) precursor was synthesized via a typical hydrothermal method, and then the precursor was sintered. Nitrogen-contained PVP was also used as the doped-N source. In a typical procedure, 0.015 mol MnSO\(_{4}\cdot\)H\(_2\)O, an appropriate amount of \((\text{NH}_4)_2\text{S}_3\text{O}_8\text{)} and PVP were dissolved into distilled water to form a homogeneous solution under vigorous stirring. Then the solution was transferred into a Teflon-lined stainless steel autoclave and kept in an oven at 120 °C for 2–12 h. After reaction, the products were collected by centrifugation, washed thoroughly with deionized water and ethanol, and dried at 80 °C. The as-prepared precursors were sintered in N\(_2\) at different temperatures for the appropriate time. The resulting precursors and the final products were marked as HMS-t-P and HMS-t-T, respectively, where t represents hydrothermal reaction time and T, the final sintering temperature. For example, HMS-2-P is the precursor hydrothermally prepared at 120 °C for 2 h, and HMS-2-800 is the final product obtained by sintering HMS-2-P at 800 °C for 2 h. Subsequently, Wang \textit{et al.}173 have reported an enhanced lithium storage performances of hierarchical hollow MoS\textsubscript{2} nanoparticles assembled from nanosheets by a hydrothermal route in which 0.865 g of molybdenum trioxide powder, 0.515 g of sodium fluoride and 1.930 g of potassium thiocyanate were added to a mixture of 30 mL of distilled water and 10 mL of ethanol. After being stirred for 10 min, the solution was then transferred into a Teflon-lined stainless steel autoclave with a capacity of 50 mL. The autoclave was sealed and maintained at 200 °C for 16 h. The dark precipitates were collected and washed with dilute acid and absolute ethanol several times. Finally, the product was dried under vacuum at 60 °C. To evaluate the performances of these hierarchical hollow nanoparticles in LIBs, the solid MoS\textsubscript{2} nanoparticles were prepared by the similar procedure, using glycerine for the solvent mixture rather than ethanol. The other experiment parameters were kept as the
same. Thripuranthaka et al.118 have prepared high quality few layer MoS\textsubscript{2} and WS\textsubscript{2} nanosheets at 200 °C and 265 °C, respectively.

3.2.5 Microwave irradiation

Microwave irradiation (MWI) has been demonstrated for the synthesis of a variety of nanomaterials including metals, metal oxides, bimetallic alloys and semiconductors with controlled size and shape without the need for high temperature or high pressure. MWI has also been used for the synthesis of TMDCs derivatives and for the exfoliation of MX\textsubscript{2} intercalation compounds. The main advantage of MWI over other conventional heating methods is heating the reaction mixture uniformly and rapidly. Due to the difference in the solvent and reactant dielectric constants, selective dielectric heating can provide significant enhancement in the transfer of energy directly to the reactants which causes an instantaneous rise in the internal temperature. The method reported here allows the rapid chemical synthesis of single layered MX\textsubscript{2}.174 Stoichiometric quantities of Mo(CO)\textsubscript{6} and Se powder were put in ethylene glycol. The system was purged for a few minutes with nitrogen prior to switching on the microwave reactor. The reactions were conducted for 1 hour under nitrogen. In the post-reaction treatment, the product was centrifuged once with the mother liquid, and a few times with ethanol, at 20 °C and 9000 rpm. The product was then dried overnight in vacuum. They have also tried other routes such as reacting a mixture of ammonium molybdate and molybdenum acetate dimer with Se in ethylene glycol to get MoSe\textsubscript{2} which is depicted in TEM images shown in Figure 9.

There are few recent reports175–177 for the supercapacitor applications. Controlled, defect-guided, metal-nanoparticle incorporation onto MX\textsubscript{2} via chemical and microwave routes: electrical, thermal, and structural properties were reported by Sreeprasad et al.178

4. Energy applications of TMDCs.

The wide range of applications of TMDCs layered semiconductor materials for energy.
Figure 10: (A) Voltage profiles of MoSx/MWNTs charged-discharged at 50 mA g$^{-1}$, (B) Representative cyclic voltammograms of MoSx/MWNTs composite for the first 5 cycles at a scan rate of 0.5 mVs$^{-1}$ between 0.01 V and 3 V. (C) comparison of cycling stability between MoSx/MWNTs and MWNTs charged-discharged at 50 mA g$^{-1}$), and (D) Rate capability of MoSx/MWNTs charged and discharged at various current densities. (Image taken from ref. 186, reproduced by the permission of Nature publishing group).

4.1 Supercapacitors

Supercapacitors have become promising candidates for next generation high-performance power devices because of their high power density, fast power delivery or uptake and excellent cycle-to-cycle stability$^{179-183}$. It can store charges in a highly reversible pathway. Also the storage of electrochemical energy in battery, “supercapacitor,” and double-layer capacitor devices is considered. Supercapacitors can be classified into two groups, one is the electric double layer capacitor (EDLC), which stores energy through the charge accumulation at the electrode–electrolyte interface/Helmholtz layers via induced polarization. The other type is the pseudo-capacitor, whose working principle is based on rapid charge transfer through redox reaction. TMDCs layers can facilitate electron transport through MX$_2$ nanostructures, which provides easier and faster ion diffusion between MX$_2$ layers/electrolytes and produces high values of specific capacitance184. For example, MoS$_2$ nanosheets possess a large specific surface area and interlayer space for the ion intercalation and have a wide range of oxidation states from Mo$^{2+}$ to Mo$^{6+}$ in the redox reaction. Therefore, its use as a combined double-layer capacitor and pseudo-
capacitor is highly expected. The resulting supercapacitor can provide both the double-layer and faradaic capacitance/pseudo capacitance and is able to function at alternating current frequencies up to 100 Hz. Since the thickness of MoS$_2$ nanosheets is up to 100 nm, it is anticipated that reduction of the nanowall thickness to few-layer or single-layer would enlarge the specific surface area of the electrode material, and thus provide larger capacitance. It also attracts prime attention as an auxiliary power source to secondary batteries because of fast charging/discharging capability, high power density, and excellent cyclability as shown in Figure 10.

Recent studies demonstrate that MoS$_2$ nanosheets prepared by hydrothermal method and by exfoliation act as a promising typical pseudocapacitive material for supercapacitor application184,186. Having advantages of high conductivity and high surface area, metallic VS$_2$ nanosheets have been employed to fabricate in plane supercapacitor electrodes187. Since the storage of electrical energy by the supercapacitor occurs near the interface between electrode and electrolyte, the optimization of the surface structure of electrode materials is very crucial in improving the energy storage capacity of supercapacitors. The hybridization with the exfoliated 2D nanosheets is effective in exploring highly efficient electrode materials for supercapacitors since the 2D nanosheet-based nanohybrids possess highly porous structure with expanded surface area. Furthermore, the sub-nanometer level thickness of the exfoliated 2D nanosheets makes possible an optimization of the power density of 2D nanosheet-based hybrid materials via a strong electronic coupling with hybridized conductive materials$^{188–197}$.

Because of the unique microstructure with combination of two 2D materials and having high surface area due to their novel crystal structure, TMDCs/graphene hybrids have a potential to significantly enhance the electrochemical performance as supercapacitor electrodes$^{193,198–200}$. The success of applying a homo or heterogeneous nanostructured hybrid materials for supercapacitors, strongly depends on the factors such as: employment of proper synthesis methods to prepare the desired nanostructure; selection of a proper combination of different materials; designation and optimization of the heterogeneous nanostructure$^{193,198–200}$. In the TMDCs/graphene hybrids, the large surface area and the nanoscale size of WS$_2$ and graphene greatly reduce the diffusion length over which both ions and electrons must transfer during the charge-discharge process. Graphene helps to enhance the conductivity of the hybrids if there is uniform coverage of TMDCs on graphene and it facilitates fast transportation of electrons throughout the hybrid electrode material. Also the heterojunctions with conductive network effectively prevents the volume expansion/contraction and aggregation of electroactive materials during charging-discharging process and improves the long cycle performance of the supercapacitors193,198.

4.2 Solar Cells

The demand of solar cells can be experienced from the following current status of power consumption worldwide. At present, consumption of power is about 13 terawatts (TW) worldwide. So far, only about 5 GW of power is generated from solar energy by solar cells$^{19,201–207}$. From the literature, it has been realized that the 2D graphene, 2D metal dichalcogenides and their nanocomposites have great potentials to replace the solar cells made from silicon that are currently being used. The majority of solar cells on the market are single-junction silicon wafer devices including single crystal and multicrystalline silicon, which are known as first generation solar cells$^{208–210}$. Their main drawback is associated with their indirect optical band gap that requires a thick active layer for the solar conversion and thus costly fabrication of large area materials. Furthermore, these cells suffer from many efficiency losses for energy conversion, such as “red losses” (photons with energies below the band gap of the device cannot be absorbed) and “blue losses” (photons with energies above the band gap lose their excess energy as
Figure 11: Solar cell device of WSe$_2$ (a) Schematic drawing of the device structure. (b) Three-dimensional schematic representation of WSe$_2$. Monolayers are ≈0.7 nm thick and are mechanically exfoliated from a bulk crystal. (c) Colored microscope image of the device. In between the gates electrodes and the WSe$_2$ flake there is a 100-nm-thick gate dielectric. The anode electrode is made of Pd/Au and the cathode of Ti/Au. The gap between the gates is 460 nm wide. (d) PL from mono- (solid blue line), bi- (solid black line), and multi-layer (dashed black line) WSe$_2$ flakes on SiO$_2$. Inset: Raman spectrum of a monolayer. (e) Gate characteristic of the device. Both electrons and holes can be injected into the channel. The curve was obtained by scanning the gate voltage from -20 V to 20 V and back. (f) Band diagram when operated as p-n junction diode ($V_{G1} < 0$, $V_{G2} > 0$). Asymmetric contact metallization allows more efficient electron (green) and hole (blue) injection. (Image taken from ref. 8 is reproduced by the permission of Nature publishing group).

TMDCs are a rapidly rising phenomenon in areas like material sciences and nanotechnology. This two dimensional material exhibits unique properties, such as low resistance, excellent optical transmittance, and high mechanical and chemical stabilities. These exceptional advantages possess great promise for its potential applications in photovoltaic devices. The electronic band structures of semiconductors directly influence their ability to absorb and emit light. As the TMDCs are already known for their flexible band gaps depending upon the varying number of layers, they can effectively be employed as the possible candidates for the fabrication of new generation solar cells, making use of their thickness monitored photoactivity. The semiconducting monosulfide and disulfide (S$_2$) nanomaterials exhibit van der Waals bonding, crystallizes in a layer-type structure and is of interest as an absorber layer for thin-film solar cells. This can be attributed to the generation of recombination centers, especially sulfur vacancies during the ion bombardment of the films due to the low defect-formation energy of disulfide, an intrinsic property of transition metal dichalcogenides. WS$_2$ is a semiconducting sulfide that
crystallizes in a layer-type structure similar to that of the well-known layer-type materials, graphite or mica. It belongs to the class of transition-metal dichalcogenides (TMDCs) like MoS(Se)$_2$ and WSe$_2$, which are all semiconductors and of great interest as absorbers for thin-film solar cells as shown in Figure 11.

This is caused by its well-defined bandgaps which falls within the range of 1–2 eV and the extraordinarily high absorption coefficients, exceeding 105 cm$^{-1}$. The TMDCs crystallize in the molybdenite structure (P6$_3$/mmc, no. 194), where the metal atoms are arranged in close packed hexagonal layers. The anisotropic bonding of these materials leads to strongly anisotropic electrical and mechanical properties, which can be used advantageously. Yun et al.214 reported on work-function of MoS$_2$ interfacial layers which can be efficiently modulated by n-doping and p-doping treatments. J.J. Devadasan et al.215 have reported p-WS$_2$ thin film based PEC solar cells. They deposited thin films of WS$_2$ on CTO coated glass substrate by electrodeposition technique and studied its photochemical properties which showed promising results. So WS$_2$ readily stands as an active material for the fabrication of solar cells. The major drawback with the photovoltaic application of TMDCs lies in separating the photogenerated electron-hole pairs in an efficient way. However, Britnell et al.216 have demonstrated a possible solution by stacking photoactive TMDC layer in between two graphene layers (which act as transparent electrodes) and doping the two graphene layers as such to position Fermi level and to enable photocurrent extraction. Their method can be used for other TMDCs as well. Their device showed an enhanced photoresponsivity which was above 0.1 A/W and a quantum efficiency of above 30%. Due to the fact that the TMDCs nanosheets boast some intriguing physical as well as chemical characteristics such as high surface area, low catalyst load, good electrical conductivity and chemical stability, they readily pose an alternative as well as competitive solution to commercial carbon black as catalyst support. It has already been reported that...
WSe$_2$ shows a promising conversion efficiency of about 12.4% due to its high photoactivity property under suitable conditions. Shanmugam et al.206 have shown that stacked layer of MoS$_2$ (Figure 12) fabricated by chemical vapor deposition method using indium tin oxide (ITO) as the substrate shows potential results to be used as an efficient solar cell material.

Furthermore, in their conducive report, S.M. Delphine et al.217 have also explained that if the effective surfaces of WSe$_2$ crystals were treated with aqua regia then the solar to electric conversion efficiency would reach up to 14%. Further improvement in the efficiency (~17%) of WSe$_2$ crystals were observed in polyiodide solution which was used as an electrolyte. Similar effects have been observed in case of MoSe$_2$ crystals too218. The cleaving process affects the active edges of both WSe$_2$ as well as MoSe$_2$ and enhances their photovoltaic properties resulting in higher conversion efficiency. Both the TMDC materials show higher stability and resistance towards photocorrosion as compared to other organic solar cells218. Many of the recent reports have shown that transition metal dichalcogenides and their hybrids can be synthesized in a very cost effective way and have the ability to actively absorb much more radiated energy from the solar energy spectra as compared to the conventional solar cells made from both organic materials as well as silicon219–221. Furthermore, the relative thickness of the fabricated devices using TMDCs would be much less, bringing in the possibility for transparent, light weight and flexible solar cells. The importance of harvesting solar energy is obvious because it only can meet up to the huge demand of power arising all over the world (~30 TW) though other renewable energy sources would definitely play their part. Also the emerging field comprising of the 2D layered TMDCs is providing an ideal platform to harvest the enormous energy provided by the sun in a way which is both renewable and cost effective.

4.3 Lithium Ion batteries

The Li-ion battery (LIB) has been considered as one of the most promising energy storage systems, because of its high absolute potential against the standard hydrogen cell (-3.04 V) and its low atomic weight (M = 6.94 gmol$^{-1}$), leading to the large energy density with a theoretical value of up to 400 W h kg$^{-1}$. Layered bulk crystals such as graphite and metal dichalcogenides (e.g. TiS$_2$) are traditional insertion-type electrode materials for LIBs113. The massive production of single- and multi-layer MoS$_2$ nanosheets from the top-down solution-phase exfoliation or the bottom-up chemical synthesis may enable their widespread application for batteries. Recently, restacked MoS$_2$ nanosheets prepared from chemical lithiation and exfoliation have been fabricated into electrodes for LIBs and compared with electrodes made from the bulk MoS$_2$. It was found that the charge capacity of the bulk MoS$_2$ decreased from over 800 mA h g$^{-1}$ to 226 mA h g$^{-1}$ after 50 cycles, whereas the restacked MoS$_2$ showed much better cycling stability and retained a high capacity of 750 mA h g$^{-1}$ after 50 cycles222. The restacked MoS$_2$ nanosheets possessed an enlarged inter-sheet spacing compared to the raw MoS$_2$, which lowered the barrier for Li-intercalation to give the better ionic conductivity222,223. Layered nanomaterials and its derivatives can be hybridized with other electrochemical active materials to form composite electrodes for LIBs, where the graphene sheets can provide conductive paths, enlarge effective surface area, and improve the cycling stability of the electrodes. Recently, Chang and Chen223 prepared few-layer MoS$_2$ and reduced graphene oxide (rGO) hybrids via the L-cysteine-assisted hydrothermal process, and then used them for LIBs. The high practical capacities and fast Li ion movement in TMS originate from two main reasons with respect to the mechanism of Li ion storage. The weak van der Waals bounded layer structure (S-metal-S) can induce easy intercalation/deintercalation of Li ions, lowering the energy barrier for Li ion movement and the transition metal compound can store a large number of Li ions through a conversion reaction.
However, the poor cyclic stability hinders their use as the alternative anode material for LIBs and it occurs due to the large volume change during the charge/discharge process, which causes pulverization of electrodes and thus deteriorates anode performance. Moreover, the graphene assisted MoS$_2$ compounds only yielded a 250 mAh g$^{-1}$ specific capacity at a 10000 mA g$^{-1}$ discharging rate, which is also an insufficient rate capability for commercialization. These atomically thin layers of MoS$_2$ display enhanced electrical and optical properties due to the quantum confinement effect. Although the first measurements of carrier mobility in atomically thin layers of MoS$_2$ resulted in the observation of relatively small values in the range of 0.5–3.0 cm2 V$^{-1}$s$^{-1}$, Balendhran et al.103 have demonstrated the successful synthesis of layered hexagonal MoS$_2$, through a simple method of thermal evaporation in a reduction environment. This method uses temperatures less than 830 °C which is much less than the temperature, which is required for the direct evaporation of MoS$_2$. By the application of the mechanical exfoliation technique on the layered MoS$_2$, we have obtained atomically thin layers of MoS$_2$ with the steps of ~0.65 nm corresponding to the fundamental thickness of the material. These atomically thin layers can be utilized in the fabrication of electronic devices of high carrier mobility to pave the way into the next generation of electronic devices especially Lithium ion batteries$^{223-227}$. WS$_2$, whose physical and chemical properties are more or less similar to that of MoS$_2$, also has been studied extensively as an active material for its possible application in the fabrication of LIBs. The electrochemical properties of superacid-treated WS$_2$ have been carefully observed in a Li-ion half-cell configuration. It showed an impressive specific capacity of 470 mAh/g at 25 A/g of current discharge rate.20 The superacid-treated WS$_2$ showed much enhanced electrochemical properties than that of pristine WS$_2$ and the enhancement factor is contributed by the increased intercalation of Li ions between the cleaved superacid-treated WS$_2$ layers. In another study228, it has been theoretically calculated that Vandium disulfide (VS$_2$) also shows high specific capacity of about ~466mAh/g and in comparison to MoS$_2$ and WS$_2$, have lower/similar Li ion diffusion barrier and low
average open circuit voltage of 0.93 V (vs Li/Li\(^+\)). The flexibility with which the layers of TMDCs can be modified/stacked and the easy intercalation/deintercalation of ions through those layers, makes the TMDCs much more impelling in the area of fabricating nanoscale devices having the ability to show ultra-high energy storage/delivering capacity.

4.4 Water Splitting

Besides solar energy, water has the potential to provide clean energy without any kind of contribution towards environmental issues. The main purpose is to breakdown the hydrogen part and makes use of H\(_2\) as a clean source of energy. Many methods have been employed to efficiently carry out the splitting of water into hydrogen (H\(_2\)) and oxygen (O). Currently used catalysts of Pt-group metals are highly efficient in carrying out the hydrogen evolution reaction (HER) but which is too expensive and thus may not be used for the mass production of hydrogen. There are reports in which it has been claimed that promising alternatives are actually available\(^{229-231}\). Water splitting is the general term for a chemical reaction in which water is separated into oxygen and hydrogen\(^{224,232-237}\). Till date, TMDCs in their bulk form have not been very efficient in HER, and were being widely used to enhance the concentration of catalytically active edges as shown in Figure 13.

The use of earth-abundant electrocatalysts would significantly reduce the high cost associated with currently used Pt-group electrocatalysts. Among TMDCs, MoS\(_2\) and WS\(_2\), which are widely available in the earth’s crust, show improved performance concerning HER. However the major setback is their application in bulk form and to produce hydrogen on a large scale. Recent report explains how monolayered nanosheets of chemically exfoliated WS\(_2\) can become an interesting candidate for carrying out the HER efficiently with having very low overpotentials\(^{230}\). Furthermore, A detailed computational study has been performed by Zhuang and Hennig in which they have made use of first-principles design approach for 2D metal dichalcogenides, MX\(_2\) (M = Nb, Mo, Ta, W, Ti, V, Zr, Hf and Pt; X = S, Se, and Te)\(^{238}\). They have found that these TMDCs are ideal for being functionalized as photocatalysts in order to carry out the water splitting process much efficiently. According to their data, MoS\(_2\), WS\(_2\), PtS\(_2\) and PtSe\(_2\) are highly active photocatalysts in comparison to other TMDCs. Density functional theory calculations have also indicated that the edges of MoS\(_2\) nanosheets are active for HER. The HER activity of various catalysts can be summarized in the ‘volcano plot’, where the exchange current density for different catalytic metals in acids is plotted as a function of the DFT-calculated metal–hydrogen bond strength. Layered TMDCs has received much attention. Zhang and colleagues have become pioneers in the field of TMDCs exfoliation by liithiation for electrochemical reactions. They reported the catalytic activity of 2D MoS\(_2\) nanosheets and metal nanoparticle (Pt, Pd, and Ag) decorated MoS\(_2\) sheets, and found that the metal nanoparticles had mainly (111) and (101) orientations on the MoS\(_2\) surface. In addition, The MoS\(_2\) sheets gave a Tafel slope of 94mV/dec, and Pt-MoS\(_2\) hybrid sheets showed much higher electrocatalytic activity (Tafel slope of 40mV/dec) towards the HER. Recently, we were able to synthesize WS\(_2\) and WS\(_2\)/rGO hybrid sheets via a hydrothermal method. The 2H-WS\(_2\) grown on the rGO interconnected conducting network was able to afford rapid electron transport and improved crystallinity after annealing, inducing increased catalytic activity. Therefore, the hybrid material showed excellent HER activity with a small overpotential, and a Tafel slope of 58mV/dec. HER performance of a variety of MoS\(_2\) and WS\(_2\) structures to enhancing the HER performance of MoS\(_2\) and WS\(_2\), 2D MoS\(_2\)/WS\(_2\) sheets and their hybrids are identified as being highly promising candidates to replace conventional Pt catalysts. However, many challenging issues associated with the use of these materials remain, and will form the basis of future research themes. The most important issue that requires elucidation is the exact mechanisms by which the
HER proceeds on WS$_2$ and MoS$_2$, as it is known that they vary with materials. Further details on the mechanism need to include crystallinity and identification of active sites and the effect of strain in the 1T phase on HER performance should be clarified$^{211,212,234,236–249}$. The knowledge gained then needs to be successfully transferred to the development of new TMDCs structures or engineered surfaces for maximizing HER performance. In addition, hybrid materials such as WS$_2$/rGO hybrid sheets have demonstrated great promise for overcoming some of the limitations of TMDs, and for affording new functions for efficient H$_2$ evolution.

CONCLUSIONS AND OUTLOOK:

Considerable advancement has been made in many application areas of inorganic semiconducting layered materials. The effort has focused on use of single sheet & few layer thick sheet device fabrications such as solar cell, Li ion battery, water splitting so that the available renewable sources of energy could be successfully exploited to the benefit of humankind. This fundamental knowledge has begun to translate into real applications although combination issues such as complementary doping and nanocomposite of inorganic layered materials with graphene require more effort. Similarly, access to high-quality, large-area inorganic single-layers and few layers for specific application is emerging with the advent of various synthesis approaches though there are still some issues/constraints which are yet to be addressed completely. These devices would surely bring a revolutionary change to the current scenario of depletion in naturally available non-renewable energy sources for a sustainable future for next generations. Also for making the devices to be commercialized, it is important for the devices to have some basic properties like flexibility, stretchability, and/or transparency. Indubitably, the future of layered TMDs based energy related materials must be very intense and stimulating.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. C. N. R. Rao, FRS (ICMS & JNCASR Bangalore), Prof. Vinayak P. Dravid (Northwestern University, USA), for constant support and encouragement. One of the authors, Dr. D. J. Late, would like to thank DST (Government of India) for Ramanujan fellowship (SR/S2/RJN-130/2012). Partial support by DST Fast-Track project (SB/FT/CS-116/2013) and CSIR-NCL MLP 028626 are gratefully acknowledged.

REFERENCES:

The authors declare no conflict of interest

© 2015 By the Authors; Licensee Borderless Science Publishing, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution license http://creativecommons.org/licenses/by/3.0

** Abbreviation**

TMDCs: Transition metal dichalcogenides; MX$_2$: Metal–dichalcogenides; 2D: Two-dimensional; CVD: Chemical Vapor Deposition; PTCDA: Perylene-tetracarboxylic dianhydride; MWI: Microwave irradiation; LIB: Li-ion battery; HER: Hydrogen evolution reaction; DFT: Density functional theory; EDLC: Electric double layer capacitor; AFM: Atomic Force Microscope; SEM: Scanning electron Microscope; HRTEM: High Resolution Transmission Electron Microscope; MoS$_2$: Molybdenum Disulfide; WS$_2$: Tungsten Disulfide; MoSe$_2$: Molybdenum Diselenide; MoTe$_2$: Molybdenum Ditelluride; TaSe$_2$: Tantalum Diselenide; NbSe$_2$: Niobium Diselenide; NiTe$_2$: Nickel Ditelluride; BN: Boron Nitride; Bi$_2$Te$_3$: Bismuth Telluride; WSe$_2$: Tungsten Diselenide; GaS: Gallium sulfide; GaSe: Gallium selenide; WTe$_2$: Tungsten Ditelluride; GaTe: Gallium Telluride; InSe: Indium Selenide; HfS$_2$: Hafnium Disulfide; PtS$_2$: Platinum Disulfide; PEC: Photoelectrochemical cell; CTO: Conductive transparent oxide;
Biography

1. Dr. Dattatray J. Late

Dr. Dattatray Late has completed his BSc, MSc and PhD (2008) degree in Physics from University of Pune (India). After completing his PhD with Prof. D. S. Joag, he has joined as a DST Postdoctoral Fellow on Nanoscience & Technology with Prof. C. N. R. Rao at JNCASR, Bangalore (2008-2010). Then he moved to Department Materials Science and Engineering, Northwestern University (USA) Chicago, as an IUSSTF Postdoctoral Fellow to work with Prof. Vinayak P. Dravid (2010-2012). Currently he holds a position of DST Ramanujan National Fellow and AcSIR Assistant Professor at CSIR-National Chemical Laboratory. His current research interest includes "Synthesis of Atomically thin nanosheets of graphene and 2D inorganic layered materials for Nanoelectronics device applications such as Transistors, Photodetector, gas sensors, supercapacitor, Light Emitting Diode, Field Emission and catalyst for water splitting etc. and Raman spectroscopy". He has authored or co-authored more than 60 research papers in international journals. His current google scholar h-index is 20 with total citations >1700. He is also reviewers for various journals in ACS, Wiley, RSC, sciencedirect and Nature publishing group etc.

2. Dr. Chandra Sekhar Rout:

Dr. Chandra Sekhar Rout is a DST Ramanujan Fellow at Indian Institute of Technology Bhubaneswar, India. He received his B.Sc. (2001) and M.Sc. (2003) degree from Utkal University and his Ph.D. from Jawaharlal Nehru Centre for Advanced Scientific Research, India (2008) followed by his postdoctoral research works at National University of Singapore and Purdue University, USA. His research interests include nanoscience and nanotechnology, nanomaterials for electronic devices, energy storage devices, chemical and biosensors etc. He has authored or co-authored more than 50 research papers in
international journals. His current google scholar h-index is 21 with total citations >2100. He is also reviewers for various top journals in ACS, Wiley, RSC, Sciencedirect etc.

3. Disha Chakravarty

Ms. Disha Chakravarty graduated (B.Tech) in Electronics and communication engineering (ECE) from Hitkarini College of Engineering and Technology (2010) Jabalpur (India). She obtained her Master’s degree (M.Tech) in Nanotechnology from Rajiv Gandhi Technical University (UTD) in 2012, Bhopal (India). There she gained enough experience in synthesis of various nanomaterials and their application in Field-Emission based devices. Currently she joined CSIR-NCL Pune, India as a Project Assistant Staff under the guidance of Dr. D. J. Late on DST sponsored project.

4. Satyajit Ratha

Mr. Satyajit Ratha is a project assistant at the School of Basic Sciences, Indian Institute of Technology Bhubaneswar, India. Prior to joining IIT Bhubaneswar, he received his Bachelor of Science, First Class Honours from Utkal University, in 2008 and Master of Science from Ravenshaw University in 2010. Satyajit’s research interests include two dimensional semiconductors, nanostructure synthesis, applications, energy storage devices and supercapacitors.